T Cell Receptor Variable Regions in Diabetes Bind to Each Other, to Insulin, Glucagon or Insulin Receptor, and to Their Antibodies
نویسندگان
چکیده
Our objective is to elucidate the nature of the autoimmune disregulation in diabetes through the antigen specificity of the T-cell receptor (TCR) sequences generated by patients with type 1 diabetes mellitus (T1DM). Previously we demonstrated that TCR from T1DM patients and NOD mice mimic insulin, glucagon and their receptors. We hypothesize that these TCR will bind to each other (as insulin and glucagon do to their receptors) and also be targets of anti-insulin and anti-glucagon antibodies. The hypervariable regions of multiple TCR from three patients were synthesized and their binding specificities determined using UV spectroscopy. ELISA was used to determine whether these TCR were recognized by anti-insulin and anti-glucagon antibodies. Each patient produced TCR that recognized insulin, glucagon and the insulin receptor (IR). These TCR also recognized each other as complementary (possibly idiotype-antiidiotype) pairs. In addition, each TCR peptide was recognized with nanomolar affinity as an antigen by an antibody against insulin, glucagon, and/or IR. Finally, each of the antibodies against insulin, glucagon and IR formed a complementary antibody (or idiotype-antiidiotype) pair with another antibody involved in the disease, again at nanomolar affinities. Every possible expression of complementarity (or idiotype-antiidiotype cross-reactivity) involving TCRs and antibodies was manifested by each patient. Two interpretations of these observations are offered. One, following Marchelonis, is that TCR-antibody complementarity is a mechanism for down-regulating the autoimmune process to re-establish tolerance to self-antigens. A non-exclusive alternative is that the trigger for autoimmunity is antigenic complementarity, which results in the production of complementary TCR and antibodies that appear to have idiotype-antiidiotype relationships among themselves.
منابع مشابه
Magnesium supplementation enhances insulin sensitivity and decreases insulin resistance in diabetic rats
Objective(s): Diabetes mellitus has been suggested to be the most common metabolic disorder associated with magnesium deficiency. This study aimed to investigate the effects and mechanisms of magnesium supplementation on insulin receptor activity in elderly type 2 diabetes using a rat model and to provide experimental evidence for insulin resistance improvement by magn...
متن کاملIn silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor
The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملThe effect of human wharton’s jelly-derived mesenchymal stem cells on MC4R, NPY, and LEPR gene expression levels in rats with streptozotocin-induced diabetes
Objective(s): Type 1 diabetes (T1D) is an autoimmune disease resulting from inflammatory destruction of islets β-cells. Nowadays, progress in cell therapy, especially mesenchymal stem cells (MSCs) proposes numerous potential remedies for T1D. We aimed to investigate the combination therapeutic effect of these cells with insulin and metformin on neuropeptide Y, melanoco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013